# Heat and Cooling Channel Design Analysis for an Electrostatic chuck



<u>www.aesgs.com</u> | +1-408-386-3278

#### **Objective:**

- To design a heater, which will have a uniform heating of wafer with a Heater uniformity of 3% (measured with a TC wafer at 17 locations) of the maximum temperature to be reached which is 250 °C.
- To design an air cooling chamber so as to reduce the temperature to 50°C with cooling rate of 20°C.

#### **Process Conditions:**

- Combined vacuum and electrostatic chuck Integrated heater
- 2 Zone heater: center and edge zone
- > Temperature ramp rate: 30°C/min heating, 20°C/min cooling
- > Heater uniformity 3% (measured with a TC wafer at 17 locations)
- Process condition in chamber: 0.1mbar
- Electrostatic clamping force (vertical): ~10N
- Clamping voltage: +/- 1.5 kV
- > Surface flatness wafer side:  $<5\mu m$  (goal:  $<2\mu m$ )
- ➤ Wafer size: 200mm and 300mm



# **PARAMETERS FOR ITERATIONS**

| ITERATIONS  | ADHESIVE<br>THICKNESS(mm) | COOLING CHANNEL<br>TYPE | COOLING CHANNEL<br>WIDTH(mm) | COOLING CHANNEL<br>HEIGHT(mm) | COOLING CHANNEL<br>WALL THK(mm) | CURRENT INNER<br>&OUTER ZONE(A) |
|-------------|---------------------------|-------------------------|------------------------------|-------------------------------|---------------------------------|---------------------------------|
| ITERATION 1 | 0.25                      | NON-SPIRAL              | 4                            | 3                             | 1.33                            | 11.5&11.5                       |
| ITERATION 2 | 0.3                       | NON-SPIRAL              | 8                            | 3                             | 4                               | 4.252&5.556                     |
| ITERATION 3 | 0.3                       | NON-SPIRAL              | 8                            | 3                             | 4                               | 4.342&5.963                     |
| ITERATION 4 | 0.3                       | SPIRAL                  | 14                           | 5                             | 4                               | 2.02&2.61                       |

| ITERATIONS  | HEAT TRACE MATERIAL | CERAMIC MATERIAL           | HEAT TRACE THICKNESS(mm) | HEAT TRACE WIDTH INNER<br>ZONE(mm) | HEAT TRACE WIDTH<br>OUTER ZONE (mm) | HEAT TRACE OTHER MODIFICATIONS                                  |
|-------------|---------------------|----------------------------|--------------------------|------------------------------------|-------------------------------------|-----------------------------------------------------------------|
| ITERATION 1 | ES 161 MO-W-MN      | Ceramic<br>Al2O3           | 0.4                      | 1                                  | 0.7                                 | NIL                                                             |
| ITERATION 2 | ES 161 MO-W-MN      | Ceramic<br>Al2O3           | 0.016                    | 3                                  | 4                                   | LOCAL THINNING NEAR MOUNTING<br>HOLES                           |
| ITERATION 3 | ES 161 MO-W-MN      | Ceramic<br>Al2O3           | 0.016                    | 3                                  | 4                                   | Traces locally thinned to 3.65 ,3.75,&<br>3.85 in local regions |
| ITERATION 4 | AgPd 29115          | Plasmapure AD-998<br>Al2O3 | 0.021                    | 3                                  | 3.5                                 | localized thinning is done in certain places                    |

# HEAT TRACE AND COOLING CHANNEL MODELS



Note: Total iterations that were actually performed were about 50. Only important iterations are being reported in this presentation.

# **AEE**

## **MODEL AND INPUTS**

#### Model cross-section



NOT TO SCALE

**Electrical Inputs** 





#### **HEATING PHASE:**

The localized thinning in certain trace length have been done to achieve uniform temperature rise. Apart from the localized area, temperature difference is around 6.5deg in the top of E-Chuck which is within the maximum allowable temperature range of 7.5°C.



### **COOLING PHASE:**

The cooling phase with the given max pressure cools the top phase of chuck from 250 °C to 50 °C at around 5minutes. The cooling in the local region at inlet diameter of 15mm is having a high temperature reduction to 44 degrees at end of 5 minutes. The range of temperature on the top of E-Chuck is 12.1°C.





# **RESULTS: COOLING PHASE**

### Max and Min Temperature at top of E-Chuck

| Location       | RO   | R25  | R50  | R75  | R100 | R125 | R145 |
|----------------|------|------|------|------|------|------|------|
| Temperature °C | 52.0 | 51.8 | 51.7 | 51.6 | 50.2 | 50.0 | 51.5 |

| Maximum Temperature= | 56.1 |
|----------------------|------|
| Minimum Temperature= | 44.2 |





#### TEMPERATURE FALL(°C) VS TIME(MIN.)



### **COOLING PHASE OUTPUT TEMPERATURE VS TIME**

| TIME<br>(MINUT<br>ES) | AVERAGE<br>TEMPERATURE(°C<br>) /MIN | TEMPERATUR<br>E FALL<br>(°C)/MIN | MAXIMUM<br>TEMPERATURE(<br>°C) /MIN | MINIMUM<br>TEMPERATURE(°C<br>) /MIN |
|-----------------------|-------------------------------------|----------------------------------|-------------------------------------|-------------------------------------|
| 0                     | 250                                 | -                                | 252.3                               | 245.9                               |
| 1                     | 175.8                               | 74.2                             | 190.8                               | 147.0                               |
| 2                     | 125.1                               | 50.7                             | 139.3                               | 102.5                               |
| 3                     | 90.4                                | 34.7                             | 139.3                               | 102.5                               |
| 4                     | 66.9                                | 23.5                             | 74.2                                | 56.2                                |
| 5                     | 51.3                                | 15.6                             | 56.1                                | 44.2                                |



# **RESULT COMPARISON & BENEFITS**

#### **Benefits:**

- Normal heating units are water cooled. In this study, we are able to use air cooling to achieve the desired cooling which saves lot of liquid handling cost. Also high tolerances and special gaskets will be required if water cooled.
- Prototyping cost saved by 50%. Only one final prototype was build to finalize the model.
- > Total time saved in prototyping was by 6months.



# HEATING PHASE OUTPUT RESULT COMPARISON

| ITERATIONS   | TOP FACE<br>TEMP.VARIATI<br>ON(°C) | TOP FACE<br>MAXIMUM<br>TEMP.(°C) | TOP FACE<br>MINIMUM<br>TEMP.(°C) | VOLTAGE<br>OUT(INNER<br>ZONE) VOLTS | VOLTAGE<br>OUT(OUTER<br>ZONE)VOLTS |
|--------------|------------------------------------|----------------------------------|----------------------------------|-------------------------------------|------------------------------------|
| ITERATIONS 1 | 147.2                              | 317                              | 169.8                            | 432                                 | 487                                |
| ITERATIONS 2 | 21.1                               | 259.3                            | 238.2                            | 256                                 | 327                                |
| ITERATIONS 3 | 7.2                                | 253.3                            | 246.1                            | 254                                 | 248                                |
| ITERATIONS 4 | 6.4                                | 252.3                            | 245.9                            | 238                                 | 253                                |





# CONTACT US

# Advanced Engineering Services

https://aesgs.com



# **THANK YOU**

